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APPENDIX A 

SURVEY DESIGN AND CALCULATION OF NATIONAL ESTIMATES 

In 1998, EPA distributed two industry surveys that were similar in content and 
purpose. The first survey, entitled U.S. EPA Collection of 1997 Iron and Steel Industry Data 
(detailed survey), was mailed to 176 iron and steel industry sites. The second survey, entitled 
U.S. EPA Collection of 1997 Iron and Steel Industry Data (Short Form) (short survey), was 
mailed to 223 iron and steel industry sites. Both surveys collected detailed technical and 
financial information from iron and steel industry sites. The short form is an abbreviated version 
of the detailed survey and was designed for those iron and steel sites that do not have 
manufacturing processes found only at integrated and non-integrated mills. Section 3 of this 
document describes these surveys in greater detail. 

Section 1 of this appendix describes the sampling plan (identification of facilities 
in the industry, sample design, selection of the sample, and out-of-scope and nonresponding 
facilities). Section 2 of this appendix describes the calculation of sample weights. Section 3 of 
this appendix describes the methodology for estimating national totals and their variance 
estimates. 
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This section describes the development of the sampling plan, which includes 
identification of the iron and steel industry, selection of the facilities to receive the detailed and 
short surveys, and the treatment of out-of scope and nonresponding facilities. 

Sampling Frame 

To produce a mailing list of facilities for the detailed survey and short form, EPA 
developed a sampling frame of the iron and steel industry.  A sampling frame is a list of all 
members (sampling units) of a population, from which a random sample of members will be 
drawn for the survey. Therefore, a sample frame is the basis for the development of a sampling 
plan to select a random sample. Using the sources identified in Table A-1, EPA developed a 
sample frame of iron and steel facilities and divided it into 12 strata (categories) based on the 
types of operations conducted at the facility. A sample frame size (N) is the total number of 
members in the frame. Since the sample frame sufficiently covered the iron and steel population, 
the frame size gave a good estimate of the population size (total number of elements in the 
population.) 

EPA cross-referenced the sources in Table A-1 with one another to obtain facility 
level information and to ensure the accuracy and applicability of each facility’s information. 
After removing the duplicate entries, EPA identified 822 candidate facilities to receive surveys. 
These candidates include some facilities that EPA now proposes to include in the Metal Products 
and Machinery (MP&M) Category and will be regulated under 40 CFR Part 438. 
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1.2 Sample Design 

To minimize the burden on the respondents to the industry surveys and improve 
the precision of estimates from the survey, EPA grouped the facilities into 12 strata (categories), 
with operations in each stratum expected to be similar. In general, the strata were determined by 
EPA’s understanding of the manufacturing processes at each facility. This grouping of similar 
facilities is known as stratification. Table A-2 describes the stratification of the iron and steel 
industry.  The Agency also developed two “certainty strata,” one for the detailed survey and one 
for the short form (strata 5 and 8, respectively). 

EPA selected a stratified random sample using the sampling frame. A stratified 
random sample separates the eligible population into nonoverlapping strata, that are as 
homogeneous as possible. Together these strata make up the whole eligible population. A 
simple random sample is then selected from each stratum. 

For the iron and steel industry surveys, there were 12 strata: seven for the detailed 
survey and five for the short survey. Table A-2 includes the strata descriptions. 

1.3 Sample Selection of Facilities 

EPA selected 402 facilities out of the 822 facilities identified in the sample frame 
is sample facilities to receive surveys. Table A-2 provides the frame size and sample size for 
each of the 12 strata. Depending on the amount/type of information EPA determined it needed 
for this rulemaking and the number of facilities in a stratum, the Agency either solicited 
information from all facilities within a stratum (i.e., performed a census) or selected a random 
sample of facilities within each stratum. EPA sent a survey to all the facilities in strata 5 and 8, 
determining that it was necessary to capture the size, complexity, or uniqueness of the steel 
operations present at these sites. EPA also sent surveys to all the facilities in strata 1 though 4 
(all cokemaking sites, integrated steel sites, and all sintering and direct reduced iron sites) 
because the number of sites is relatively low and because of the size, complexity, and uniqueness 
of raw material preparation and steel manufacturing operations present. EPA statistically 
sampled the remaining sites in strata 6, 7, and 9 through 12. The sample sizes were determined 
to detect a relative difference of 30 percent on a proportion of 0.25 with 90 percent confidence 
for a binary variable (e.g., a yes/no question)1. EPA used the following formula to calculate the 
sample size for each stratum: 

Z 2 q/(d 2p)
nh � 

1 � [Z 2 q/(2p)] 
Nh 

1 While many questions are not binary, this is a common assumption used in survey methodology. 
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where: 

nh = Number of samples to be selected from stratum h, and h=1,2,...,12; 
p = True proportion being estimated (assuming to be 0.25); 
q = 1-p; 
Z = Value obtained from the standard normal (Z) distribution. (For 90 

percent confidence, this value is 1.645, which is 95th percentile of 
standard normal distribution.) 

d = Relative difference (assuming to be 0.3 or 30 percent); and 
Nh = Total number of facilities in stratum h. 

1.4 Out-of-Scope Sites and Response Rates 

EPA mailed industry surveys to all of the facilities in the sample. After receiving 
the industry survey, EPA determined that some facilities were “out-of-scope” or “ineligible” 
because the regulation would not apply to them. After reviewing the survey responses, EPA 
identified additional ineligible facilities. In all, EPA identified 203 of the 402 sample facilities as 
ineligible. Over 75 percent of these facilities were ineligible because EPA is proposing that their 
operations be regulated under the MP&M Category (see Section 1 of this document). 

Of the remaining 199 facilities, 188 were eligible respondents, and 11 were 
nonrespondents (i.e., did not return a survey). The overall unweighted response rate was 94 
percent (188/199). Section 2 of this appendix provides detailed facility level response rates by 
stratum. EPA made a nonrespondent adjustment to the weights, as described in Section 2 of this 
appendix. 
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This section describes the methodology used to calculate the base weights, non-
response adjustments, and the final weights. The base weights and nonresponse adjustments 
reflect the probability of selection for each facility and adjustments for facility level non-
responses, respectively.  Weighting the data allows inferences to be made about all eligible 
facilities, not just those included in the sample, but also those not included in the sample or those 
that did not respond to the survey. Also, the weighted estimates have a smaller variance than 
unweighted estimates (see Section 3 of this appendix for variance estimation.) In its analysis, 
EPA applied sample weights to survey data. 

2.1 Base Weights 

The base weight assigned to each facility is the reciprocal of the probability that 
the facility was sampled for the particular stratum. EPA took a census for strata 1 through 5 and 
stratum 8; thus, the probability of selection for facilities in these strata is one. EPA selected a 
simple random sample from strata 6 and 7 and strata 9 through 12. The probability of selection 
for facility I from stratum h can be written as: 
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nhPROBSELhi � 
Nh 

where: 

i = Facility i;

h = Any of the h=1,2,..., 12 strata;

nh = Total sample size for stratum h; and

Nh = Total frame size for stratum h.


The base weight is the inverse of this probability, and for facility I in stratum h 
can be written as: 

1 NhBASE WEIGHTh � � 
PROBSELh nh 

Table A-2 provides the sample size and frame size by stratum. Using stratum 6 
from Table 3-1 as an example, the probability of selection for all sampled facilities in stratum 6 
would be 40/69=.57971. Thus, the base weight for all facilities in stratum 6 would be 
1/.57971=1.725. 

Facility Level Nonresponse Adjustment 

EPA made a facility-level nonresponse adjustment to account for those facilities 
that did not complete the industry surveys. Since the eligibility status of the nonrespondents was 
unknown, EPA assumed that the eligibility status of the nonrespondents was proportional to the 
known proportion of eligible respondents and ineligibles. 

The facility-level nonresponse adjustment for stratum h was calculated as: 

nhNRAh � 
rh 

where: 
rh = Number of sample facilities (eligible and ineligible facilities) in 

stratum h responding to the detailed survey and short form. 

For example, the nonresponse adjustment for stratum 6 can be calculated as 
follows: 

40 40
NRA6 � � � 1.02564 

30 � 9 39 
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Table A-3 provides the response status of the sampled cases and the base weight 
and facility-level nonresponse adjustment by stratum. There were no eligible respondents in 
stratum 12; therefore, EPA also assumed the nonrespondents to be ineligible. 

2.3 Final Weights 

The final facility weight is the product of the base weight and the facility-level 
nonresponse adjustment. This can be written as: 

FINALWTh = BASEWTh × NRAh 

Again, using the example from stratum 6, the final facility weight would be: 

1.725 × 1.02564 = 1.76923 

Ineligible facilities also have a base weight and nonresponse adjustments, and thus 
an associated final weight. However, they represent only other ineligible facilities in this sample 
frame. Therefore, their contribution to the national estimates are not of interest, and thus their 
final weights are zeros. 

Table A-4 provides the base weight, facility-level nonresponse adjustment factor, 
and final weight for each facility by stratum. 
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This section presents the general methodology and equations for calculating 
estimates from the detailed survey and short form sampling efforts. 

3.1 National Estimates 

For each characteristic of interest (e.g., number of a particular operation using dry 
air pollution control or annual discharge flow from a particular operation), EPA estimated totals 
for the entire U.S. iron and steel industry (‘national estimates’). Each national estimate, �st, was 
calculated as: 

12 nh 

�st � � [FINALWTh � � yhi ] 
h�1 i�1 

where: 

h = Stratum and h=1,2,...12 since there are 12 strata; 
FINALWTh = Final weight for the stratum h; and 
yih = Ith value from the sample in stratum h. 
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3.2 Variance Estimation 

The estimate of the variance for a national estimate can be calculated as follows: 

L 
2Var(�st) � � FINALWTh

2 
� FPCh � nh � sh 

h�1 

where: 

�st =	 National estimate of number of facilities with the characteristic of 
interest; 

L = Number of strata (L= 12); 

nh
FPCh = 1 � 

Nh 

(finite population correction for stratum h); and 

nh
2 1 

sh = 
nh � 1

[� (yih � yh)
2] 

i�1 

(the estimate of the variance within stratum h where 

hh 

� yih 

i�1 is the sample mean of stratum h). 
yh � 

nh 

The variance estimates can be used to calculate confidence intervals for the survey 
estimates. The confidence interval comprises a lower confidence limit and an upper confidence 
limit. The greater the variance, the wider the interval, and the lower the precision associated with 
the estimate. A 95-percent confidence interval should be interpreted as follows: If many samples 
were taken from the population of interest and a confidence interval were calculated from each 
sample, 95 percent of the confidence intervals would contain the true value of what is being 
estimated and 5 percent of the confidence intervals would not contain the true value.  Thus, a 95-
percent confidence interval is interpreted as saying that the true value of the population can be 
found by the random interval 95 percent of the time. The lower and upper 95-percent confidence 
limits can be written as: 

Lower 95-percent confidence limit = �st � (Z0.025 � var(�st) )  

Upper 95-percent confidence limit = �st � (Z0.025 � var(�st) )  
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where: 

Z0.025 =	 Value obtained from the standard normal (Z) distribution. (For 95-
percent confidence interval, this value is 1.96, which is 97.5th 
percentile of standard normal distribution.)2 

When comparing estimates, if the confidence intervals overlap, there is no statistically significant 
difference between the two estimates. 

��� ���������� 

A-1	 Cochran, William G. Sampling Techniques , 3rd ed., New York: John Wiley and 
Sons, Inc., 1977. 

A-2 SAS®, The SAS System, SAS Institute Inc. 

2When the national estimate is based on a sample size of less than 30, the appropriate value from the t distribution is 
used instead of Z0.025 for calculating the upper and lower confidence limits. 
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Table A-1


Sources Used For Development of Sample Frame


1 Association of Iron and Steel Engineers’ 1997 Directory: Iron and Steel Plants 
Volume 1, Plants and Facilities 

2 Iron and Steel Works of the World (12th edition) directory 

3 Iron and Steel Society’s Steel Industry of Canada, Mexico, and the United States: Plant 
Locations Map 

4 American Coke and Coal Chemicals Institute (Membership List) 

5 American Galvanizers Association (Membership List) 

6 American Iron and Steel Institute (Membership List) 

7 American Wire Producers Association (Membership List) 

8 Cold Finished Steel Bar Institute (Membership List) 

9 Specialty Steel Industry of North America (Membership List) 

10 Steel Manufacturers Association (Membership List) 

11 Steel Tube Industry of North America (Membership List) 

12 Wire Association International (Membership List) 

13 Dun & Bradstreet Facility Index database 

14 EPA Permit Compliance System (PCS) database 

15 EPA Toxic Release Inventory (TRI) database 

16 Iron and Steelmaker Journal, “Roundup” editions 

17 33 Metalproducing Journal, “Census of the North American Steel Industry” 

18 33 Metalproducing Journal, “Roundup” editions 
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Table A-2


Frame Sizes and Sample Sizes for the Iron and Steel Population Frame


Stratum 
h Stratum Description 

Frame 
Size 
(Nh) 

Sample 
Size 
(nh) 

Detailed Survey Strata 

1 Integrated steel facilities with cokemaking 9 9 

2 Integrated steel facilities without cokemaking 12 12 

3 Stand-alone cokemaking facilities 16 16 

4 Stand-alone direct reduced ironmaking or sintering 
facilities 

5 5 

5 Detailed survey certainty stratum 60 60 

6 Non-integrated facilities (with and without finishing) 69 40 

7 Stand-alone finishing and stand-alone hot forming 
facilities 

54 35 

Short Survey Strata 

8 Short survey certainty stratum 13 13 

9 Stand-alone cold forming facilities 62 37 

10 Stand-alone pipe and tube facilities 164 59 

11 Stand-alone hot dip coating facilities 106 49 

12 Stand-alone wire facilities 252 67 

TOTAL: 822 402 
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Table A-3 

Response Status, Base Weight, and Facility-Level Nonresponse Adjustments 
by Stratum 

Stratum 
(h) 

Frame 
Size 
(Nh) 

Sample 
Size 
(nh) 

Response Status 

Base 
Weight 

Facility Level 
Nonresponse 
Adjustment 

Number of 
Eligible 

Number of 
Ineligible 

Number of 
Nonrespondents 

1 9 9 9 0 0 1.00000 1.00000 

2 12 12 12 0 0 1.00000 1.00000 

3 16 16 15 1 0 1.00000 1.00000 

4 5 5 3 2 0 1.00000 1.00000 

5 60 60 54 4 2 1.00000 1.03448 

6 69 40 30 9 1 1.72500 1.02564 

7 54 35 28 7 0 1.54286 1.00000 

8 13 13 11 2 0 1.00000 1.00000 

9 62 37 19 18 0 1.67568 1.00000 

10 164 59 6 50 3 2.77966 1.05357 

11 106 49 1 48 0 2.16327 1.00000 

12 252 67 0 62 5 3.76119 0.00000 

Total 822 402 188 203 11 
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Table A-4 

Base Weights, Facility-Level Nonresponse Adjustment Factors, and 
Final Weights by Stratum 

Stratum Base Weight 

Facility Level 
Nonresponse 
Adjustment Final Weight 

1.00000 1.00000 1.00000 

1.00000 1.00000 1.00000 

1.00000 1.00000 1.00000 

1.00000 1.00000 1.00000 

1.00000 1.03448 1.03448 

1.72500 1.02564 1.76923 

1.54286 1.00000 1.54286 

1.00000 1.00000 1.00000 

1.67568 1.00000 1.67568 

2.77966 1.05357 2.92857 

2.16327 1.00000 2.16327 

3.76119 0.00000 0.00000 
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APPENDIX B


MODIFIED DELTA-LOGNORMAL DISTRIBUTION


B.1 Basic Overview of the Modified Delta-Lognormal Distribution


B.2 Continuous and Discrete Portions of the Modified Delta-Lognormal


Distribution 

B.3 Combining the Continuous and Discrete Portions 

B.4 Autocorrelation 

B.5 Episode-specific Estimates Under the Modified Delta-Lognormal 

Distribution 

B.5.1 Episode Data Set Requirements


B.5.2 Estimation of Episode-specific Long-Term Averages


B.5.3 Estimation of Episode-Specific Variability Factors


B.5.3.1 Estimation of Episode-specific Daily Variability Factors 

B.5.3.2 Estimation of Episode-Specific Monthly Variability Factors 

Assuming No Autocorrelation 

B.5.3.3 Estimation of Episode-Specific Monthly Variability Factors 

Assuming Autocorrelation 

B.5.3.4 Evaluation of Episode-Specific Variability Factors 

B.6 References 

This appendix describes the modified delta-lognormal distribution and the estimation of 

the episode-specific long-term averages and variability factors used to calculate the limitations 

and standards.1  This appendix provides the statistical methodology that was used to obtain the 

results presented in Section 14. 

1In the remainder of this appendix, references to ‘limitations’ includes ‘standards.’ 
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B.1 Basic Overview of the Modified Delta-Lognormal Distribution 

EPA selected the modified delta-lognormal distribution to model pollutant effluent 

concentrations from the iron and steel industry in developing the long-term averages and 

variability factors. A typical effluent data set from a sampling episode or self-monitoring episode 

(see Section 12 for a discussion of the data associated with these episodes) consists of a mixture 

of measured (detected) and non-detected values. The modified delta-lognormal distribution is 

appropriate for such data sets because it models the data as a mixture of measurements that 

follow a lognormal distribution and non-detect measurements that occur with a certain 

probability. The model also allows for the possibility that non-detect measurements occur at 

multiple sample-specific detection limits. Because the data appeared to fit the modified delta-

lognormal model reasonably well, EPA has determined that this model is appropriate for these 

data. 

The modified delta-lognormal distribution is a modification of the ‘delta distribution' 

originally developed by Aitchison and Brown.2  While this distribution was originally developed 

to model economic data, other researchers have shown the application to environmental data.3 

The resulting mixed distributional model, that combines a continuous density portion with a 

discrete-valued spike at zero, is also known as the delta-lognormal distribution. The delta in the 

name refers to the proportion of the overall distribution contained in the discrete distributional 

spike at zero, that is, the proportion of zero amounts. The remaining non-zero, non-censored 

(NC) amounts are grouped together and fit to a lognormal distribution. 

EPA modified this delta-lognormal distribution to incorporate multiple detection limits. 

In the modification of the delta portion, the single spike located at zero is replaced by a discrete 

distribution made up of multiple spikes. Each spike in this modification is associated with a 

distinct sample-specific detection limit associated with non-detected (ND) measurements in the 

2Aitchison, J. and Brown, J.A.C. (1963) The Lognormal Distribution.  Cambridge University Press, pages 87-99. 

3Owen, W.J. and T.A. DeRouen. 1980. “Estimation of the Mean for Lognormal Data Containing Zeroes and Left-
Censored Values, with Applications to the Measurement of Worker Exposure to Air Contaminants.” Biometrics, 
36:707-719. 
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database.4  A lognormal density is used to represent the set of measured values. This 

modification of the delta-lognormal distribution is illustrated in Figure 1. 

Figure 1 

The following two subsections describe the delta and lognormal portions of the modified delta-

lognormal distribution in further detail. 

B.2 Continuous and Discrete Portions of the Modified Delta-Lognormal Distribution 

In the discrete portion of the modified delta-lognormal distribution, the non-detected 

values corresponding to the k reported sample-specific detection limits. In the model, � 

represents the proportion of non-detected values and is the sum of smaller fractions, �i, each 

representing the proportion of non-detected values associated with each distinct detection limit 

value.  By letting Di equal the value of the ith smallest distinct detection limit in the data set and 

the random variable XD represents a randomly chosen non-detected measurement, the cumulative 

4Previously, EPA had modified the delta-lognormal model to account for non-detected measurements by placing the 
distributional “spike” at a single positive value, usually equal to the nominal method detection limit, rather than at 
zero. For further details, see Kahn and Rubin, 1989. This adaptation was used in developing limitations and 
standards for the organic chemicals, plastics, and synthetic fibers (OCPSF) and pesticides manufacturing 
rulemakings.  EPA has used the current modification in several, more recent, rulemakings. 
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distribution function of the discrete portion of the modified delta-lognormal model can be 

mathematically expressed as: 

c )
δ

P r  (X D ≤ =  
1 ∑δ i 0 < c (1) 

i Di ≤c: 

The mean and variance of this discrete distribution can be calculated using the following 

formulas: 

1 k 

(E X D ) = δ ∑δi D i (2) 
i =1 

2 
1 k 

V ar ( X D ) = δ ∑δι (D i − E ( X D ) ) (3) 
i =1 

The continuous, lognormal portion of the modified delta-lognormal distribution was used 

to model the detected measurements from the iron and steel industry database. The cumulative 

probability distribution of the continuous portion of the modified delta-lognormal distribution 

can be mathematically expressed as: 

P r  [X C ≤ =Φ
 

ln ( c ) −µ 
c ] 

 σ  
(4)

where the random variable XC represents a randomly chosen detected measurement, � is the 

standard normal distribution, and µ  and � are parameters of the distribution. 

The expected value, E(XC), and the variance, Var(XC

be calculated as: 

), of the lognormal distribution can 

E X C )= ex p 

µ +σ

2 
 (5)( 

 2  

V ar (X C )=[E (X C )]2 (ex p (σ 2 )−1) (6) 
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B.3 Combining the Continuous and Discrete Portions 

The continuous portion of the modified delta-lognormal distribution is combined with the 

discrete portion to model data sets that contain a mixture of non-detected and detected 

measurements. It is possible to fit a wide variety of observed effluent data sets to the modified 

delta-lognormal distribution. Multiple detection limits for non-detect measurements are 

incorporated, as are measured ("detected") values. The same basic framework can be used even 

if there are no non-detected values in the data set (in this case, it is the same as the lognormal 

distribution). Thus, the modified delta-lognormal distribution offers a large degree of flexibility 

in modeling effluent data. 

The modified delta-lognormal random variable U can be expressed as a combination of 

three other independent variables, that is, 

U = I u X D +(1 − I u )X C (7) 

where XD represents a random non-detect from the discrete portion of the distribution, XC 

represents a random detected measurement from the continuous lognormal portion, and Iu is an 

indicator variable signaling whether any particular random measurement, u, is non-detected or 

non-censored (that is, Iu=1 if u is non-detected; Iu=0 if u is non-censored). Using a weighted 

sum, the cumulative distribution function from the discrete portion of the distribution (equation 

1) can be combined with the function from the continuous portion (equation 4) to obtain the 

overall cumulative probability distribution of the modified delta-lognormal distribution as 

follows, 

P r  (U ≤ = ∑ δi +(1 −δ)Φ 
ln ( c ) −µ 

 (8)c ) 
i Di ≤c  σ : 

where Di is the value of the ith sample-specific detection limit. 
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    

The expected value of the random variable U can be derived as a weighted sum of the 

expected values of the discrete and continuous portions of the distribution (equations 2 and 5, 

respectively) as follows 

E U( ) =δE ( X D ) +(1 −δ) E (X C ) (9) 

In a similar manner, the expected value of the random variable squared can be written as 

a weighted sum of the expected values of the squares of the discrete and continuous portions of 

the distribution as follows 

E U  2 ) =δE ( X D ) +(1 −δ)E ( X C 
2 ) (10)( 2 

Although written in terms of U, the following relationship holds for all random variables, U, X

and XC. 

D, 

( ( )] (11)E U  2 ) =V ar (U ) +[ E U  
2 

So using equation 11 to solve for Var(U), and applying the relationships in equations 9 and 10, 

the variance of U can be obtained as 

2 2 2(1 UV ar (U ) =δ V ar  (X D ) +[E (X D )]  + −δ) V ar  (X C ) +[E (X C )]  −[E ( )] (12) 

B.4 Autocorrelation 

Effluent data from wastewater treatment technologies may be autocorrelated. For 

example, autocorrelation would be present in the data if the loading of a pollutant is relatively 

high one day, and is likely to remain high the next, and possibly, succeeding days. The 

measurements may be similar from one day to the next because of retention of wastewater in 

basins, holding ponds, and other components of the wastewater system. For data with 

autocorrelation, statistical time series are appropriate for modeling the data. 

There are many time series models that might be considered for modeling wastewater 

measurements. One method of modeling autocorrelation is by using an autoregressive lag-1 

model, designated as an AR(1) model. The AR(1) model is a reasonable model for many series 

of wastewater measurements. The AR(1) model has one parameter, �, the correlation between 

B-6 



the measurements from successive sampling events, of which time intervals are equally spaced, 

otherwise referred to as the lag-1 correlation. Unless specified, � is assumed to be zero. 

The autocorrelation affects the mean and variance estimates for the data. The 

autocorrelation adjustments account for the effects of autocorrelation on these estimates. These 

adjustments are discussed in the following sections. 

B.5 Episode-specific Estimates Under the Modified Delta-Lognormal Distribution 

In order to use the modified delta-lognormal model to calculate the limitations, the 

parameters of the distribution are estimated from the data. These estimates are then used to 

calculate the limitations. 

The parameters �i and � are estimated from the data using the following formulas: 

nd 

δ� i = 
1 ∑ I d j = D i )(

n j =1 (13) 

δ� = 
n d 

n 

where nd is the number of non-detected measurements, dj, j = 1 to nd, are the detection limits for 

the non-detected measurements, n is the number of measurements (both detected and non-

detected) and I(�) is an indicator function equal to one if the phrase within the parentheses is true 

and zero otherwise.  The "hat" over the parameters indicates that they are estimated from the 

data. 

The expected value and the variance of the discrete portion of the modified delta-

lognormal distribution can be estimated from the data as: 

k 

E X D ) = 
1 
� ∑δ� i D i (14)� (
δ i =1 
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� 

� 

� 

k 

V a r ( X D ) = 
1 
� ∑δ� i (D i − E�( X D ))2 

(15)
δ i =1 

The parameters of the continuous portion of the modified delta-lognormal distribution, � 

and � are estimated by 

n c x i µ = ∑ 
ln ( )  

i =1 n c 

2 (16) 
n1 c (ln ( ) − µ)

σ� 2 = ∑ 
x i 

� 

g (ρC ) i =1 n c − 1 

where xi is the ith detected measurement value and nc is the number of detected measurements 

(note that n = nd + nc), and g(�C) adjusts the estimate of �
�

 for the effects of autocorrelation to 

create an unbiased estimate for �
� 

. The adjustment for autocorrelation is: 

2 ρC 
 

n c − −
ρC (1 − ρC 

n c −1 ) (17)1g (ρC ) = −  
c ( c − 1) 1 − ρC  

1
1 − ρC n n  

where �C is the correlation of the natural logarithm of detected measurements from successive 

sampling events since the lognormal model is used for continuous measurements. Note that if 

autocorrelation is not present in the data, g(�C)=1. 

The expected value and the variance of the lognormal portion of the modified 

delta-lognormal distribution can be calculated from the data as: 

 σ� 2  
E� ( X C ) = ex p 


 µ + 

2 
 (18) 

2
� σ� 2V a r ( X C ) = (E� ( X C )) (e x p ( ) − 1) (19)
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Finally, the expected value and variance of the modified delta-lognormal distribution can 

be estimated using the following formulas: 

E� (U ) =δ E X D ) + (1 −δ�) � (� � ( E X C ) (20)

� �
 

� (1V a r (U ) =δ V a r ( X D )+[E� ( X D )]2 
 + −δ�) V�a r ( X C )+[E� ( X C )]2  −[E� (U )]2 

(21) 

Equations 18 through 21 are particularly important in the estimation of episode-specific 

long-term averages and variability factors as described in the following sections. These sections 

are preceded by a section that identifies the episode data set requirements. 

B.5.1 Episode Data Set Requirements 

The parameter estimates for the lognormal portion of the distribution can be calculated 

with as few as two distinct detected values in a data set. (In order to calculate the variance of the 

modified delta-lognormal distribution, two distinct detected values are the minimum number that 

can be used and still obtain an estimate of the variance for the distribution.) 

If an episode data set for a pollutant contained three or more observations with two or 

more distinct detected concentration values, then EPA used the modified delta-lognormal 

distribution to calculate long-term averages and variability factors. If the episode data set for a 

pollutant did not meet these requirements, EPA used an arithmetic average to calculate the 

episode-specific long-term average and excluded the dataset from the variability factor 

calculations (because the variability could not be calculated). 

In statistical terms, each measurement was assumed to be identically distributed within 

the episode data set. 

The next two sections apply the modified delta-lognormal distribution to the data for 

estimating episode-specific long-term averages and variability factors for the iron and steel 

industry. 
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B.5.2 Estimation of Episode-specific Long-Term Averages 

If an episode dataset for a pollutant meets the requirements described in the last section, 

then EPA calculated the long-term average using equation 20. Otherwise, EPA calculated the 

long-term average as the arithmetic average of the daily values where the sample-specific 

detection limit was used for each non-detected measurement. 

B.5.3 Estimation of Episode-Specific Variability Factors 

For each episode, EPA estimated the daily variability factors by fitting a modified delta-

lognormal distribution to the measurements for each pollutant. In contrast, EPA estimated 

monthly variability factors by fitting a modified delta-lognormal distribution to the monthly 

averages for the pollutant at the episode. EPA developed these averages using the same number 

of measurements as the assumed monitoring frequency for the pollutant. EPA is assuming that 

all pollutants will be monitored weekly (approximately four times a month).5 

B.5.3.1 Estimation of Episode-specific Daily Variability Factors 

The episode-specific daily variability factor is a function of the expected value and the 

99th percentile of the modified delta-lognormal distribution fit to the concentration values of the 

pollutant in the wastewater from the episode. The expected value was estimated using equation 

20 (the expected value is the same as the episode-specific long-term average). 

The 99th percentile of the modified delta-lognormal distribution fit to each data set was 

estimated by using an iterative approach. First, the pollutant-specific detection limits were 

ordered from smallest to largest. Next, the cumulative distribution function, p, for each detection 

limit was computed. The general form, for a given value c, was: 

5Compliance with the monthly average limitations will be required in the final rulemaking regardless of the number 
of samples analyzed and averaged. 
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  

  

c � 

i 
� 

� + � 
 

    
    

� + �  

 ln ( )−µ 
p = ∑ δ� i +(1 −δ�)Φ  (22) 

i D  ≤c  σ : 

where � is the standard normal cumulative distribution function. Next, the interval containing 

the 99th percentile was identified. Finally, the 99th percentile of the modified delta-lognormal 

distribution was estimated. The following steps were completed to compute the estimated 99th 

percentile of each data subset: 

Step 1 Using equation 22, k values of p at c=Dm, m=1,...,k were computed and labeled pm. 

Step 2 The smallest value of m (m=1,...,k), such that pm > 0.99, was determined and labeled as 

pj. If no such m existed, steps 3 and 4 were skipped and step 5 was computed instead. 

Step 3 Computed p* = pj - �j. 

Step 4 If p* < 0.99, then P� 9 9  = Dj 

else if p* > 0.99, then 

  j −1   
  0.99−∑δ� i   

P� 99  = ex p  µ σΦ−1
 

i =1 



 

(23) 
  1−δ�   

where �-1 is the inverse normal distribution function. 

Step 5 If no such m exists such that pm � 0.99 (m=1,...,k), then 

  0.99−δ�   
P� 99  = ex p  µ σΦ−1    (24) 

  1−δ�   
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The episode-specific daily variability factor, VF1, was then calculated as: 

P� 99  
V F  1 = 

� ( )  
(25) 

B.5.3.2	 Estimation of Episode-Specific Monthly Variability Factors Assuming No 

Autocorrelation 

EPA estimated the monthly variability factors by fitting a modified delta-lognormal 

distribution to the monthly averages. Episode-specific monthly variability factors were based on 

4-day monthly averages because the monitoring frequency assumed to be weekly (approximately 

four times a month). 

In order to calculate the 4-day variability factors (VF4), the assumption was made that the 

approximating distribution of U 4 , the sample mean for a random sample of four independent 

concentrations, was also derived from the modified delta-lognormal distribution.6  To obtain the 

expected value of the 4-day averages, equation 20 is modified for the mean of the distribution of 

4-day averages: 

E� (U 4 ) =δ� 4 E X  4 ) +(1 −δ� 4 ) � (� ( E X  4 ) (26) 

where ( )  denotes the mean of the discrete portion of the distribution of the average of fourX 4 

independent concentrations, (i.e., when all observations are non-detected values) and 

( )  denotes the mean of the continuous lognormal portion (i.e., when any observations areX 4 

detected). 

First, it was assumed that the detection of each measurement is independent ( the 

measurements were also assumed to be independent; see the following section for adjustments 

6As described in Section 14.4, when non-detected measurements are aggregated with non-censored measurements, 
EPA determined that the result should be considered non-censored. 
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�  

for autocorrelation). Therefore, the probability of the detection of the measurements is �4 = �4. 

Because the measurements are assumed to be independent, the following relationships hold: 

E U  4 ) = E U  ) (27) 

� V ar (U ) 
V ar (U 4 ) = 

4 
E� (( X 4 ) ) = E� (X D ) 
� V ar (X D ) 

V ar (( X 4 ) ) = 
D 4 

Substituting into equation 27 and solving for the expected value of the continuous portion 

of the distribution gives: 

� ( E U  ) −δ� 4 E� (X D ) E X  4 ) = (28)
1 −δ� 4 

Using the relationship in equation 20 for the averages of 4-day measurements and substituting 

terms from equation 26 and solving for the variance of the continuous portion of U 4 gives: 

V a r (U ) 
� ( 2 

� 4 

 

V a r ( X D ) � ( 2  

4 
+[E U  )] −δ 

 4 
+[E X D )]  2 (29) 

V a r ( X 4 ) = −[E X  4 ) ]
1 −δ� 4 

Using equations 18 and 19 and solving for the parameters of the lognormal distribution 

describing the distribution of ( X 4 ) gives: 

 V ar (X 4 )  � 2 
σ4 = ln  C 

2 
+ 1 and µ4 = ln (E X  4 ) )−σ4 (30)� 2 

� � ( 
 (E X  4 ) C ) 

 
 

� ( C 2 
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In finding the estimated 95th percentile of the average of four observations, four non-

detects, not all at the same sample-specific detection limit, can generate an average that is not 

necessarily equal to D1, D2,..., or Dk. Consequently, more than k discrete points exist in the 

distribution of the 4-day averages. For example, the average of four non-detects at k=2 detection 

limits, are at the following discrete points with the associated probabilities: 

* * 

1 D 1 δ1 

2 (3 D 1 + D 2 ) / 4 4δ δ2 

3 (2 D 1 + 2 D 2 ) / 4 6δ δ2 

4 (D 1 + 3 D 2 ) / 4 4δ δ  

5 D 2 δ2 

When all four observations are non-detected values, and when k distinct non-detected 

values exist, the multinomial distribution can be used to determine associated probabilities. That 

is, 

 ∑ u D i  
P r  
 U 4 = i =1  = 

4 ! ∏δ i
ui (31) 

1 !4 
 u u  2 !�u k ! i =1 

where ui is the number of non-detected measurements in the data set with the D

The number of possible discrete points, k*, for k=1,2,3,4, and 5 are as follows: 

i detection limit. 

k k* 

1 1 

2 5 

3 15 

4 35 

5 70 

B-14 



� ( �( 
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To find the estimated 95th percentile of the distribution of the average of four 

observations, the same basic steps as for the 99th percentile of the distribution of the observations 

given in section B.5.3.1, were used with the following changes: 

Step 1 Change P99 to P95, and 0.99 to 0.95. 

Step 2 Change Dm to Dm
*, the weighted averages of the sample-specific detection limits. 

*Step 3 Change �i to �i . 

Step 4 Change k to k*, the number of possible discrete points based on k detection limits. 

2Step 5 Change the estimates of �, µ and �2 to estimates of �4, µ4 , and σ 4 respectively. 

E U  4 ) = E U  )
Then, using , the estimate of the episode-specific 4-day variability factor, VF4, 

was calculated as: 

P� 95  
V F  4 =

�( )  
(32) 

B.5.3.3	 Estimation of Episode-Specific Variability Factors For Monthly Averages 

Assuming Autocorrelation 

Autocorrelation in the successive measurements affects the variance of the monthly 

averages. Therefore, autocorrelation must be accounted for when calculating the monthly 

variability factors. The calculations of the monthly variability factors when the observations are 

correlated assumes that the data follow the Lag-1 AR model discussed in Section B.4 and that all 

values are detected. Reported detection limits for non-detected measurements are treated as 

measured values in the continuous portion. 

Assuming that all measurements are detected is equivalent to assuming that � = 0, the 

data have a lognormal distribution, and the equations for the continuous portion of the delta-

lognormal distribution can be adapted to describe all the data. Autocorrelation has been already 

incorporated into the estimates of µ and � as in equation 16 and additional adjustment to the 
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�monthly variance V a r ( )  from equation 27 is required. Once the following adjustment isU 4 

incorporated, the procedure described in the previous section can be used. 

Using the Lag-1 AR model discussed in Section B.4 to model the effluent data, and 

assuming that these effluent values follow a lognormal distribution with parameters � and σ, the 

variance of the monthly averages of autocorrelated values is approximated by: 

V ar ( )  
V ar (U 4 ) = (1 + f 4 (ρ A )) (33)

4 

where f is the factor to adjust for the autocorrelation. 

In general, the f factor to adjust for autocorrelation can be written as: 

1 e x p (ρ A
i j  σ� 2 ) − 1 

f m ( ) = ∑∑ 
σ� 2m ∈ ∈ e x p ( ) − 1 

(34)

where � A is the correlation of the natural logarithm of measurements from successive sampling 

events of the same time intervals assuming all values are non-censored and S is the set of 

sampling events (represented by sequential numbers) on which samples for the average are taken 

and m is the number of sampling events in S. For a monthly average based on 4-day samples 

collected a week apart, the resulting formula can be simplified to: 

k 
� 22 3 ex p (ρ σ ) − 1 

f 4 (ρ A ) = ∑(4 − k ) (35) 
σ� 24 k =1 ex p ( ) − 1 
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B.5.3.4 Evaluation of Episode-Specific Variability Factors


The parameter estimates for the lognormal portion of the distribution can be calculated 

with as few as two distinct measured values in a data set (in order to calculate the variance); 

however, these estimates can be unstable (as can estimates from larger data sets). As stated in 

section B.5.1, EPA used the modified delta-lognormal distribution to develop episode-specific 

variability factors for data sets that had three or more observations with two or more distinct 

measured concentration values. 

To identify situations producing unexpected results, EPA reviewed all of the variability 

factors and compared daily to monthly variability factors. EPA used several criteria to determine 

if the episode-specific daily and monthly variability factors should be included in calculating the 

option variability factors. One criteria that EPA used was that the daily and monthly variability 

factors should be greater than 1.0. A variability factor less than 1.0 would result in a unexpected 

result where the estimated 99th percentile would be less than the long-term average.  This would 

be an indication that the estimate of σ (the standard deviation in log scale) was unstable.  A 

second criteria was that not all of the sample-specific detection limits could exceed the values of 

the non-censored values. All the episode-specific variability factors used for the limitations and 

standards met first and second criteria. A third criteria was that the daily variability factor had to 

be greater than the monthly variability factor. When this criteria was not met, the daily and 

monthly variability factors were excluded. 
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